Big Data for Spatial Analysis

data"?

Example

Portal

Uses of Bi_l Data

Application:

How to de with big (spatio-temporal) data?

Reference

Big Data for Spatial Analysis

D G Rossiter

Cornell University, Soil & Crop Sciences Section

Nanjing Normal University, Geographic Sciences Department
南京师范大学地理学学院

March 4, 2022

Examples

Porta

Uses of B Data

Application

How to deswith big (spatio-temporal) data?

- 1 What is "big data"?
- 2 Examples
- 3 Portals
- 4 Uses of Big Data
- 6 Applications
- 6 How to deal with big (spatio-temporal) data?

Examples

Portal

Ises of Bi Data

Application

How to dea with big (spatiotemporal) data?

- 1 What is "big data"?
- 2 Examples
- 3 Portals
- 4 Uses of Big Data
- S Applications
- 6 How to deal with big (spatio-temporal) data?

Example

Uses of E

Application

How to dea with big (spatiotemporal) data?

Reference

Often discussed in terms of **volume** (size of data), **velocity** (frequency of data), and **variety** (diversity of data types):

volume data sets that are **too large** to be handled by common processing methods

· e.g., exceed the storage capacity of main memory or even secondary memory

velocity hyper-temporal data sets, or high-bandwidth streams of data

· e.g., social media activity, real-time locations

variety data sets that have too much **complexity** to be handled by common processing methods

 e.g., observations with 100's to 1000's of attributes of variable or even unknown data quality

What is different about big data?

What is "big data"?

Example

Porta

Jses of B Data

Application

How to de with big (spatio-temporal) data?

- Too large to fully understand summaries or identification of unusual cases ("outliers")
- · Too complex to fully understand or control modelling
- Generally need machine-learning methods to analyze (e.g., random forests, neural nets)
- Generally too large to analyze on individual computers, requires cloud computing.

Example

Porta

Jses of I Data

Applicatio

How to de with big (spatio-temporal) data?

Reference

"Kilobytes $2^{10}\approx 10^3$ were stored on floppy disks. Megabytes $2^{20}\approx 10^6$ were stored on hard disks. Terabytes $2^{30}\approx 10^9$ were stored in disk arrays. Petabytes $2^{40}\approx 10^{12}$ are stored in the cloud.

"As we moved along that progression, we went from the *folder* analogy to the *file cabinet* analogy to the *library* analogy to – well, at petabytes we ran out of organizational analogies."

- Anderson, C. (2008, June 23). The end of theory: the data deluge makes the scientific method obsolete. **Wired**. https://www.wired.com/2008/06/pb-theory/[1]

Portal

Jses of E Data

Application

How to de with big (spatiotemporal) data?

- capturing massive amounts of obserations
 - e.g., real-time sensors, satellite images, monitoring instruments
- 2 storage and data transfer from storage to computation
- 3 search, i.e., query to find/subset/summarize
- **4 processing**, i.e., computation (CPU, memory, parallelization)
- **5** analysis: methods and understanding the results
- 6 sharing, information policies, e.g., privacy
 - · different parts of the database may have different policies
- visualization
 - · summarizing with appropriate graphic design

Sources of big data

What is "big data"?

Example

Portal

Jses of B Data

Application

How to de with big (spatio-temporal) data?

- · sensor networks with fine temporal resolution
 - · e.g., automated weather stations
- mobile devices
 - · e.g, geo-located phones
- · remote sensors
 - · ever-increasing spatio-temporal resolution
- · digital laboratory instruments
- · point-of-sales or service
 - · e.g., pharmacies, retail stores
- user contributions
 - · social media, citizen science

Examples

Portal

Jses of Bi Data

Application

How to dea with big (spatiotemporal) data?

- 1 What is "big data"?
- 2 Examples
- 3 Portals
- 4 Uses of Big Data
- S Applications
- 6 How to deal with big (spatio-temporal) data?

Examples of large datasets

What is "big data"?

Examples

Portal

Ises of E ata

Application

How to dea with big (spatiotemporal) data?

- \cdot NOAA $\approx 50 \cdot 10^9$ multivariate observations of oceans (as of 2018) 1
 - temperature, salinity, oxygen, nitrates, phosphates and silicates at the particular location and depth collected at a particular time, so 4D
- · 23andMe² DNA analysis of 5 · 10⁶ individuals
- \cdot Twitter has about 500 \cdot 10⁶ tweets per day³
- \cdot MasterCard processed $74 \cdot 10^9$ transactions per year in 2012^4

https://www.ncei.noaa.gov/products/world-ocean-atlas

²https://www.23andme.com/en-int/dna-ancestry/, 17-Jan-2021

³http://www.internetlivestats.com/twitter-statistics/
4http://blog.unibulmerchantservices.com/

Citizen science

What is "big data"?

Examples

Portal

Jses of Big Data

Application

How to de with big (spatio-temporal) data?

- · eBird⁵ (Cornell Ornithology)
 - \cdot 737 · 10⁶ observations (as of end 2019)⁶
 - · 169 · 106 new observations in 2020 ("volume", "velocity")
 - · (semi-)automated quality control⁷

⁵http://www.ebird.org

⁶https://ebird.org/news/ebird-2019-year-in-review

⁷https:

Agriculture

What is "big data"?

Examples

Portal

Uses of E Data

Application

How to de with big (spatio-temporal) data?

Reference

· Aq-Analytics⁸

- zoom in, click on individual fields: insurance, revenue, yield forecast
- · combines multiple open layers, with own analytics
- Gro Intelligence⁹
 - "leading the modern agricultural revolution using data and technology, driven by advances in parallel processing, remote sensing, machine learning, and Al"

⁸https://app.profit.ag/app
9https://www.gro-intelligence.com

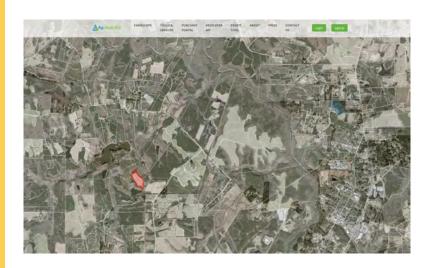
Big Data for

Ag-Analytics - location

What is "big data"?

Examples

Portal


Uses of

Application

How to de

with big (spatiotemporal) data?

Referen

near Franklinton, North Carolina field at (36.1068N, -78.3530E)

Ag-Analytics - field static information

What is "big

Examples

Uses of B

Application

Application

How to de with big (spatio-temporal)

Ag-Analytics - field dynamic information

What is "big

Examples

Doutele

Jses of Bi

Application

How to de with big (spatio-temporal)

Gro Intelligence

What is "big data"?

Examples

Portal

Data

Application

with big (spatiotemporal) data?

Reference

Browse data

Visualize data from our collection of over 6.8 million data series and growing.

Swarch data c

Geography
Land, Water and Land

Infrastructure
Production Infrastructure.
Storage
Telecommunications -

Investment, Lending and Transfers Assets, Investment, Lending

Macroeconomic
Indicators
Indicators,
Indicators,
Inflation Labor Statistics)

Prices Indices, Market Prices. Producer Prices :

Supply

Market Supply, PostHarvest Processing,
Production (

Trade

Weather and Climate

Co.

灵

ill W

Vast Range of Sources

Meaningful Geospatial Data

Analytical Tools

Visualizations

Soils - SoilGrids

What is "big data"?

Examples

Portal

Jses of E Data

Application

How to dea with big (spatiotemporal) data?

- · Reference: [10]
- Global predictions for numeric soil properties: OC, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm; total 280 raster layers
- · based on $\approx 150k$ profiles, 158 gridded covariates
- · Maps for on-line view or download 10

¹⁰https://soilgrids.isric.org

SoilGrids processing flow

What is "big

Examples

D - --- 1 -

Uses of Big

Application

How to deswith big (spatio-temporal) data?

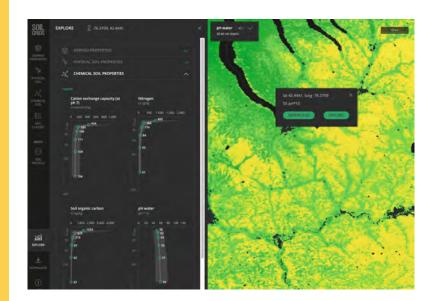
Reference

Fig. 1. The (like driver) statistical transactive (or generating Solitinia, Solitinia, somewhole production in completion, MASA WOOS and SITM that primaris and Opin Source statement producing whith a TLA State or producing, set Opin Source Competition Conference (Solitinia Solitinia Solitinia

SoilGrids processing results

What is "big

Examples


Doubole

Uses of E

Application

Application

How to de with big (spatio-temporal) data?

Examples

Portal

Uses of I Data

Application

How to dea with big (spatiotemporal) data?

Reference

POLARIS [3]

- Purpose: map **probability** of **soil series** at **every grid cell** in the lower 48 (USA) States; total $\approx 1.25 \cdot 10^9$ grid cells
- · algorithm: DSMART (Disaggregation and Harmonization of Soil Map Units Through Resampled Classification Trees)
- supercomputer "Blue Waters"; 12 474 nodes 30 x 30 km, with 60 km buffer to ensure continuity
- 30 m horizontal spatial resolution, so $1000 \times 1000 = 10^6$ per 1° tile¹¹
- · required 450 000 core-hours = 5 wall-clock hours
- "This is negligible computer time at current HPC facilities that can handle 10 million (\approx 1100 years) core-hour tasks."

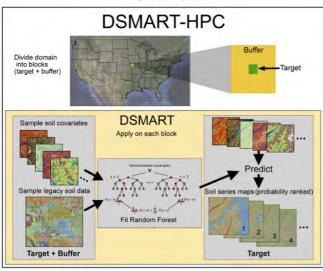
¹¹ http://hydrology.cee.duke.edu/POLARIS/

POLARIS methods

What is "big

Examples

Daniel I


Uses of B

Application

How to de with big (spatio-temporal)

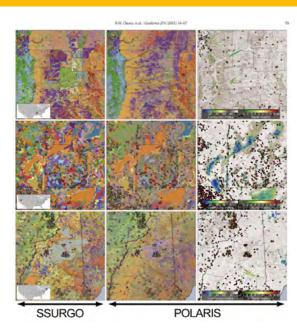
Reference

N.W. Chaney et al. / Geoderma 274 (2016) 54-67

POLARIS results

What is "big data"?

Examples


. . .

Uses of B

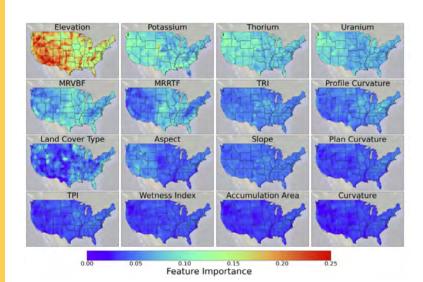
Application

How to de

with big (spatiotemporal) data?

POLARIS covariate importance

What is "big


Examples

Danie I

Uses of I Data

Application

How to de with big (spatio-temporal) data?

Examples

Portals

Uses of Bi Data

Application

How to dea with big (spatiotemporal)

- 1) What is "big data"?
- 2 Examples
- 3 Portals
- 4 Uses of Big Data
- 5 Applications
- 6 How to deal with big (spatio-temporal) data?

Portals and data brokers

What is "big data"?

Example

Portals

Jses of I Data

Application

How to dea with big (spatiotemporal)

- · Collect and catalog many sources of geographic data
- · example: World Food Programme (WFP) Geonode 12
- · example: Soil Geographic Databases 13
- · example: OpenGovernment14
- · problem: searching for relevant (to the user) information
 - · WFP Geonode: search by region, type of information, keyword, date, extent, file type

¹² https://geonode.wfp.org

¹³ https://www.isric.org/explore/soil-geographic-databases

¹⁴https://www.data.gov/open-gov/

Portal: OpenGovernment

What is "big

Evample

Portals

Uses of B

Application

Application

How to dea with big (spatiotemporal)

Reference

Map representation of Open Data Sites

data"?

Examples

Portal

Uses of Big Data

Application

How to dea with big (spatiotemporal) data?

- 1) What is "big data"?
- 2 Examples
- 3 Portals
- 4 Uses of Big Data
- S Applications
- 6 How to deal with big (spatio-temporal) data?

Example

Portal

Uses of Big Data

Application
How to dea
with big
(spatiotemporal)

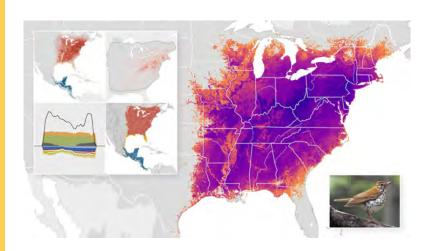
- · Scientific research into processes
 - · e.g., eBird Science applications 15:
 - "connect[s] birdwatchers around the world in a way that informs research and conservation ... 2019 featured the first annual update of eBird Status and Trends, which now provides status and distribution information for 302 species ... "16
- Mapping
 - · e.g. SoilGrids, POLARIS
- · Prediction, decision support
 - · e.g., Ag-Analytics, Gro Intelligence
- · Visualization, hypothesis formation

¹⁵https://ebird.org/science

¹⁶https://ebird.org/news/ebird-2019-year-in-review

Analysis: eBird analytics

What is "big


Examples

Portals

Uses of Big Data

Application

How to de with big (spatio-temporal)

Status & trends for wood thrush (Hylocichla mustelina)

Prediction, (near) real-time

What is "big data"?

Example

Uses of Big

How to de with big (spatio-temporal)

- · European Radioactivity Environmental Monitoring 17
 - "Gamma dose rate averages and maxima for the last 24 hours in almost real time"
 - European Radiological Data Exchange Platform (EURDEP): a network for the exchange of radiological monitoring data between most European countries
 - Large network of sensors, automatic reporting and summarizing
- Methods: see [5] "Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network"

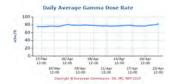
¹⁷https://remap.jrc.ec.europa.eu

Radiation monitoring

What is "big data"?

Evample

Portals


Uses of Big Data

Application

How to dea with big (spatiotemporal)

Examples

Portal

ses of Big

Applications

How to dea with big (spatiotemporal) data?

- 1 What is "big data"?
- 2 Examples
- 3 Portals
- 4 Uses of Big Data
- 5 Applications
- 6 How to deal with big (spatio-temporal) data?

Some applications

What is "big data"?

Example

Portal

Uses of E Data

Applications

How to des with big (spatiotemporal)

- · General discussions: [2, 4]
- · Ecology: [6]
- · Geographic sociology: [7]
- · Epidemiology: [9, 12]
- · Agroecosystems: [8]
- · Agricultural entomology: [11]
- · Radiation monitoring: [5]

data"?

Examples

Portal

ses of Big ata

Applications

How to deal with big (spatiotemporal) data?

- 1 What is "big data"?
- 2 Examples
- 3 Portals
- 4 Uses of Big Data
- S Applications
- 6 How to deal with big (spatio-temporal) data?

How to deal with big (spatio-temporal) data?

What is "big

Example

Porta

Uses of I Data

Application

How to deal with big (spatiotemporal) data?

- automated methods for data capture, data screening (quality control)
- robust statistical methods, not sensitive to outliers, not dependent on manual selection of model form
- · massive computing resources
- collaborative science combine different disciplinary knowledge; also requires experts in inter-, multi-disciplinary collaboration

Computing platforms for big data

What is "big data"?

Example

Uses of I

Application

How to deal with big (spatiotemporal) data?

Reference

Massive datasets can not be handled on many personal/departmental computers. So **cloud computing** must be used.

- · Example: Google Earth Engine 18
 - "A planetary-scale platform for Earth science data & analysis - Powered by Google's cloud infrastructure"
 - "hosts satellite imagery and stores it in a public data archive that includes historical earth images going back more than forty years ... made available for global-scale data mining.
 - · Aimed at consistent Earth-wide analyses, but can be used regionally or locally
 - Must register an account¹⁹ (free for research, education, and nonprofit use), and log in to use.

¹⁸https://earthengine.google.com/

¹⁹https://signup.earthengine.google.com/

Use of GE Engine

What is "big data"?

Example

Porta

Jses of B Data

Applications

How to deal with big (spatiotemporal) data?

- · Computation is all done **remotely** (parallel processing)
 - · local computer only for coding/viewing
- · Accessible via an Application Programming Interface (API)
 - \cdot Javascript (built into GEE)²⁰, Python, **R** with rgee package²¹
- · Built-in code editor
- · Direct access to the datasets
- · Image processing, Geometry algorithms
- Machine-learning algorithms: un/supervised classification

²⁰https:

^{//}developers.google.com/earth-engine/guides/getstarted
21https://r-spatial.github.io/rgee/

GE Engine datasets

What is "big data"?

Example

Porta

Jses of E Data

Application

How to deal with big (spatiotemporal) data?

Reference

Many datasets are also too large for local storage, so they are also in the cloud and used as needed; Google Earth Engine includes many datasets²², including:

- · Imagery (Landsat, Sentinel, MODIS ...)
- · Atmospheric conditions (can help correct other products)
- · Weather
- · Geophysical: terrain (e.g., SRTM), elevation
- · Nighlights
- Administrative
- Interpreted: land cover, land use, cropland (e.g., USDA NASS; Global Food Security)

²²https://developers.google.com/earth-engine/datasets/catalog

Conclusion

What is "big data"?

Example

Portal

Uses of Bi Data

Application

How to deal with big (spatiotemporal) data?

Reference

Ever-increasing amounts of data, ever-increasing computer power, allow integrating many "big" data sources to deal with "big", complex, inter-disciplinary problems.

Example

Uses of

Application

How to dea

with big
(spatiotemporal)

- [1] Chris Anderson. The end of theory: the data deluge makes the scientific method obsolete. *Wired*, Jun 2008. ISSN 1059-1028. URL https://www.wired.com/2008/06/pb-theory/.
- [2] Roger Bivand and Konstantin Krivoruchko. Big data sampling and spatial analysis: "which of the two ladles, of fig-wood or gold, is appropriate to the soup and the pot?". *Statistics & Probability Letters*, 136:87-91, May 2018. doi: 10.1016/j.spl.2018.02.012.
- [3] Nathaniel W. Chaney, Eric F. Wood, Alexander B. McBratney, Jonathan W. Hempel, Travis W. Nauman, Colby W. Brungard, and Nathan P. Odgers. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States. *Geoderma*, 274:54-67, Jul 2016. doi: 10.1016/j.geoderma.2016.03.025.
- [4] Hamid Ekbia, Michael Mattioli, Inna Kouper, G. Arave, Ali Ghazinejad, Timothy Bowman, Venkata Ratandeep Suri, Andrew Tsou, Scott Weingart, and Cassidy R. Sugimoto. Big data, bigger dilemmas: A critical review. *Journal of the Association for Information Science and Technology*, 66(8):1523-1545, 2015. doi: 10.1002/asi.23294.
- [5] Paul H. Hiemstra, Edzer J. Pebesma, Chris J.W. Twenhöfel, and Gerard B.M. Heuvelink. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. *Computers & Geosciences*, 35(8):1711-1721, Aug 2009. doi: 10.1016/j.cageo.2008.10.011.

Uses of

How to deswith big (spatio-temporal)

- [6] S. L. LaDeau, B. A. Han, E. J. Rosi-Marshall, and K. C. Weathers. The next decade of big data in ecosystem science. *Ecosystems*, 20(2):274–283, Mar 2017. doi: 10.1007/s10021-016-0075-y.
- [7] Jiwei Li, Qingqing Ye, Xuankai Deng, Yaolin Liu, and Yanfang Liu. Spatial-temporal analysis on Spring Festival travel rush in China based on multisource big data. *Sustainability*, 8(11):UNSP 1184, Nov 2016. doi: 10.3390/su8111184.
- [8] M. Susan Moran, Philip Heilman, Debra P. C. Peters, and Chandra Holifield Collins. Agroecosystem research with big data and a modified scientific method using machine learning concepts. *Ecosphere*, 7(10):e01493, 2016. doi: 10.1002/ecs2.1493.
- [9] Dirk U. Pfeiffer and Kim B. Stevens. Spatial and temporal epidemiological analysis in the big data era. *Preventive Veterinary Medicine*, 122(1-2):213-220, Nov 2015. doi: 10.1016/j.prevetmed.2015.05.012.
- [10] Laura Poggio, Luis M. de Sousa, Niels H. Batjes, Gerard B. M. Heuvelink, Bas Kempen, Eloi Ribeiro, and David Rossiter. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. *SOIL*, 7(1):217-240, June 2021. doi: 10.5194/soil-7-217-2021.

Example

Portal

Jses of Bi Data

Application

How to de with big (spatio-temporal) data?

- [11] Jay A. Rosenheim and Claudio Gratton. Ecoinformatics (big data) for agricultural entomology: pitfalls, progress, and promise. *Annual Review of Entomology*, 62(1):399-417, Jan 2017. doi: 10.1146/annurev-ento-031616-035444.
- [12] Kim B. Stevens and Dirk U. Pfeiffer. Spatial modelling of disease using data- and knowledge-driven approaches. *Spatial and Spatio-temporal Epidemiology*, 2(3):125–133, Sep 2011. doi: 10.1016/j.sste.2011.07.007.