Variance
Could use any measure of dispersion.
- Variance
- Population variance average squared difference from the mean
$$
\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$
- Unbiased estimate of population variance from sample set
$$
s^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$
- Standard Deviation
$$
\sigma=\sqrt{\sigma^{2}}
$$
Dykstra-Parsons Coefficient of Variation
Dykstra-Parsons Coefficient of Variation is a popular method for assessment of permeability variation:
Consider end members:
If $\sigma_{k}^{2}=0$ then $k_{50}=k_{16}$ and $V=0.0$
$V \leq 1.0$ since $k_{16} \geq 0.0$
Lorenz Coefficient
https://youtube.com/clip/UgkxKLFthw1KyOQQCa_eV2SmEHucEcbVvUu0
Comments NOTHING